Global Unit Generation

New perspectives – revenue and cost optimized pumped storage concepts

Dr. Klaus Engels Louisville, KY – July 19, 2012

Future system demands require highly flexible PSP with optimized revenues and cost structures

E.ON's Waldeck 2+ project is an extension of the existing interconnected Waldeck Group

European hydro power portfolio

No. of operated hydro plants

Efficient capacity

Annual net generation

212

6.161 MW

18,5 TWh

Demand for flexibility will permanently increase within the next years due to growing share of renewables feed-in

^{*)} Germany/ input for simulation without export, direct industry, railway or auxiliary consumption

35%

200

370

2020

140

420

2015

Profitability of PSP is supported by high demand of ancillary services - increasing revenue share accordingly

Typical investment cost structure for new build projects of hydropower plants incl. pumped storage plants

Basic CAPEX set

Plant type - driver for revenues Pumped Run-of-river Storage storage High 700-3,200 Head 1,400-2,800 1,850-4,600 driver for CAPEX >150m Medium 1,600-3,400 2,100-4,800 Head 50-150m Head Low 1,900-3,800 Head <50m CAPEX (€/kW)

Split of CAPEX

General note: depending on the real project, individual cost structure may be different!

To optimize the technical concept a comprehensive threestep evaluation approach has been applied

New Build Potential

Extension Stage

Machine Concept

How much additional pumpedstorage capacity fits into the German market?

What is the market optimal capacity and upper basin size? How much flexibility is required in today's market? → Which machine type should be applied?

Machine types differ in their flexibility to participate in the reserve markets and in their investment cost

Three technical alternatives are available:

Two main flexibility parameters of given machine types were simulated:

Investments required:

Pumped turbine with synchronous generator

Pumped turbine

generator

Ternary machine set

pumping mode Controllability in

Minimum load of turbine

- Limited flexibility (no controllability of pump, high min. load of turbine)
- Medium flexibility (variation of power output of pump possible, medium min. load of turbine)
- Maximum flexibility (hydraulic short circuit can be applied, low min. load of turbine)

Capital Expenditure €/kW

An asynchronous pump-turbine is proposed as optimal machine concept - dependent on the individual situation

Simulated contribution margins:

Asynchron pumped-turbine and ternary machine set reach same level of contribution margin, whereas synchron pumped-turbine remains 20% behind.

Capital expenditure assumptions *:

Cost-benefit-analysis with consideration of capital expenditure reveals pumped-turbine with asynchronous generator to be the most beneficial solution.

^{*} Source: Lahmeyer International, only M&E part (approx. 20% of total budget)

Global Unit Generation

Backup

Contact details and CV

Contact

Dr. Klaus Engels **VP Asset Risk and Governance** T +49 871 694-4010 F +49 871 694-4008 M +49 170 8562698

E.ON Generation Fleet E.ON Wasserkraft GmbH Luitpoldstraße 27 84034 Landshut

Curriculum Vitae

- University Degree in Electrical Engineering, RWTH Aachen University, Germany
- University Degree in Economics, FernUni Hagen, Germany
- 1997 2002 Academic assistant and **PHD studies** at **RWTH Aachen University**
- **Asset Manager Transmission Grid** 2002 - 2004RWE Energy AG, Dortmund
- **Project Manager** 2005 – 2008 Roland Berger Strategy Consultants, Dusseldorf/Munich
- **Head of Business Development** 2008 - 2010E.ON Wasserkraft, Landshut
- since 2010 Vice President Asset Risk and Governance Hydro, E.ON Fleet **Management Generation**
- Recently invited to Advisory Working Group for the study "Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S." of DoE

The energy-economic modeling of pumped-storage plants must address both wholesale and reserve markets

Wholesale & reserve market

Particularities for scheduled energy and reserve markets (prices, sellable reserve capacities, calling signals...)

Thermal & hydraulic systems

Hydraulic constraints and technical restrictions in the considered system (incl. thermal plants → portfolio approach)

Evaluation method

- An integrated algorithm optimizes the power plant scheduling on wholesale and reserve market
- Results: optimized dispatch of portfolio and contribution margin of PSP (incl. portfolio effect)

Additional restrictions needed to be defined in simulation model to reflect machine type characteristics

$$\begin{split} B_{SP,m}^i &= 0, \text{else } B_{SP,m}^i = 1 \\ B_{ST,m}^i &= 0, \text{else } B_{ST,m}^i = 1 \\ B_{ST,n}^i &= E_{SE}^i + \sum_{j=1}^n P_{Res,j}^i + \sum_{j=1}^n E_{Res,j}^i - SC_{max,pos} = 0 \\ E_{SE}^i - \sum_{k=1}^m P_{Res,j}^i - \sum_{k=1}^m E_{Res,j}^i - SC_{max,neg} = 0 \end{split}$$

- With re-definition of optimization problem complexity increased tremendously
- Simulation approach needed to be split into two steps to limit calculation times

Step 1:

Portfolio-simulation without restrictions in order to conclude how much reserve capacity is provided by Waldeck Group if part of the portfolio.

Step 2:

Machine type simulation on stand-alone basis for Waldeck-Group with portfoliosimulated reserve capacity provision as input and 2009 actual prices

Waldeck 2+ extracted from group results

Analysis of run-of-day schedules showed that machine type specifics were captured well in simulation

Exemplary 24-h-schedules

Take-aways

- No full load operation in wholesale market, irrespective of machine type
- Large amount of capacity sold to reserve market
- Increasing flexibility of machine types fosters reserve market participation
- Hardly any standstill times to be able to participate in PCR market, which is very lucrative in Germany
- Simulated energy output schedule looks different from a traditional PSP schedule of today

